Jana Health Care
316 86 Street, Brooklyn
New York City, Z. cod: 11209
Tel: 1 (718) 238-4287
Fax: 1 (718) 238-4289
Email: info@janaheathcare.com

We are partner with Check Life Center                                                                     Hablamos Espaňol
Jana Health Care specializes in internal medicine     Jana Health Care specializes in internal medicine     Jana Health Care specializes in internal medicine     Jana Health Care specializes in internal medicine
Cholesterol

Cholesterol, from the Ancient Greek chole- (bile) and stereos (solid) followed by the chemical suffix -ol for an alcohol, is an organic molecule. It is a sterol (or modified steroid), a lipid molecule and is biosynthesized by many animal cells because it is an essential structural component of animal cell membranes that is required to maintain both membrane structural integrity and fluidity. Cholesterol enables animal cells to (a) not need a cell wall (like plants & bacteria) to protect membrane integrity/cell-viability and thus be able to (b) change shape and (c) move about (unlike bacteria and plant cells which are restricted by their cell walls).

In addition to its importance within cells, cholesterol also serves as a precursor for the biosynthesis of steroid hormones, bile acids, and vitamin D. Cholesterol is the principal sterol synthesized by animals. All kinds of cells in animals can produce it. In vertebrates the hepatic cells typically produce greater amounts than other cells. It is almost completely absent among prokaryotes (bacteria and archaea), although there are some exceptions such as Mycoplasma, which require cholesterol for growth.

François Poulletier de la Salle first identified cholesterol in solid form in gallstones in 1769. However, it was not until 1815 that chemist Michel Eugène Chevreul named the compound "cholesterine".

Physiology

Since cholesterol is essential for all animal life, each cell synthesizes it from simpler molecules, a complex 37-step process that starts with the intracellular protein enzyme HMG-CoA reductase. However, normal and particularly high levels of fats (including cholesterol) in the blood circulation, depending on how they are transported within lipoproteins, are strongly associated with the progression of atherosclerosis.

For a man of about 68 kg (150 lb), typical total body-cholesterol synthesis is approximately 1 g (1,000 mg) per day, and total body content is approximately 35 g, primarily located within the membranes of all the cells of the body. Typical daily dietary intake of additional cholesterol, in the United States, is 200–300 mg.

Most ingested cholesterol is esterified, and esterified cholesterol is poorly absorbed. The body also compensates for any absorption of additional cholesterol by reducing cholesterol synthesis. For these reasons, seven to ten hours after ingestion of cholesterol, blood levels will show little if any effect on total body cholesterol content or concentrations of cholesterol in the blood. However, during the first seven hours after ingestion of cholesterol, the levels significantly increase.

Cholesterol is recycled. The liver excretes it in a non-esterified form (via bile) into the digestive tract. Typically about 50% of the excreted cholesterol is reabsorbed by the small bowel back into the bloodstream.

Plants make cholesterol in very small amounts. Plants manufacture phytosterols (substances chemically similar to cholesterol produced within plants), which can compete with cholesterol for reabsorption in the intestinal tract, thus potentially reducing cholesterol reabsorption. When intestinal lining cells absorb phytosterols, in place of cholesterol, they usually excrete the phytosterol molecules back into the GI tract, an important protective mechanism.

Function

Cholesterol is required to build and maintain membranes; it modulates membrane fluidity over the range of physiological temperatures. The hydroxyl group on cholesterol interacts with the polar head groups of the membrane phospholipids and sphingolipids, while the bulky steroid and the hydrocarbon chain are embedded in the membrane, alongside the nonpolar fatty-acid chain of the other lipids. Through the interaction with the phospholipid fatty-acid chains, cholesterol increases membrane packing, which reduces membrane fluidity. The structure of the tetracyclic ring of cholesterol contributes to the decreased fluidity of the cell membrane as the molecule is in a trans conformation making all but the side chain of cholesterol rigid and planar. In this structural role, cholesterol reduces the permeability of the plasma membrane to neutral solutes, hydrogen ions, and sodium ions.

Within the cell membrane, cholesterol also functions in intracellular transport, cell signaling and nerve conduction. Cholesterol is essential for the structure and function of invaginated caveolae and clathrin-coated pits, including caveola-dependent and clathrin-dependent endocytosis. The role of cholesterol in such endocytosis can be investigated by using methyl beta cyclodextrin (MβCD) to remove cholesterol from the plasma membrane. Recently, cholesterol has also been implicated in cell signaling processes, assisting in the formation of lipid rafts in the plasma membrane. Lipid raft formation brings receptor proteins in close proximity with high concentrations of second messenger molecules. In many neurons, a myelin sheath, rich in cholesterol, since it is derived from compacted layers of Schwann cell membrane, provides insulation for more efficient conduction of impulses.

Within cells, cholesterol is the precursor molecule in several biochemical pathways. In the liver, cholesterol is converted to bile, which is then stored in the gallbladder. Bile contains bile salts, which solubilize fats in the digestive tract and aid in the intestinal absorption of fat molecules as well as the fat-soluble vitamins, A, D, E, and K. Cholesterol is an important precursor molecule for the synthesis of vitamin D and the steroid hormones, including the adrenal gland hormones cortisol and aldosterone, as well as the sex hormones progesterone, estrogens, and testosterone, and their derivatives.

Some research indicates cholesterol may act as an antioxidant.

Cholesterol testing

The American Heart Association recommends testing cholesterol every five years for people aged 20 years or older. A separate set of American Heart Association guidelines issued in 2013 indicates that patients taking statin medications should have their cholesterol tested 4–12 weeks after their first dose and then every 3–12 months thereafter.

A blood sample after 12-hour fasting is taken by a doctor, or a home cholesterol-monitoring device is used to determine a lipoprotein profile. This measures total cholesterol, LDL (bad) cholesterol, HDL (good) cholesterol, and triglycerides. It is recommended to test cholesterol at least every five years if a person has total cholesterol of 5.2 mmol/L or more (200+ mg/dL), or if a man over age 45 or a woman over age 50 has HDL (good) cholesterol less than 1 mmol/L (40 mg/dL), or there are other risk factors for heart disease and stroke. Other risk factors for heart disease include Diabetes, Hypertension (or use of anti-hypertensive medications), low HDL, family history of CAD and hypercholesterolemia, and cigarette smoking.

Dr. Laila Farhat runs a very efficient practice and she can help you, we think it's the best time to take an appointment
We can help you in: English, Spanish, Arabic and French

Opennnn Hours:

Mon: 9am - 6pm          Tue: 9am - 6pm         Wed: 9am - 6pm

Thu: 10am - 6pm         Fri: 9am - 7pm           Sat: 10am - 5pm

Jana Health Care 2002. All Right Reserved